Part 1: Context & Progress (Adam)

- Regulatory Backdrop:
 - What agencies regulate FHI’s work?

- FHI Regulatory Position
 - Why FHI goes beyond the minimum requirements
 - How different technologies trigger different regulations

- Where we are today
 - Where and how the FHI is regulated
 - Pros, cons, and progress of different technologies
Part 2: Deregulation Options (Bill)

- Why we need a test case
- Where on the FH roadmap is chestnut
- Testing the process with a specific transgenic
 - Using oxalate oxidase as a model & some advantages
 - Same considerations needed for any chosen gene
- Why research needs non-regulated trees
- What deregulation might look like
Potential regulators in U.S.

- **APHIS** regulates transgenic plants based on process
- **EPA** regulates if there is a Plant Incorporated Protectant (PIP) under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
- **FDA** regulates if the plant produces food for people or animals
Above and Beyond the Minimum

- Braided approach so each arm has a START and STOP button
- Outreach to the public
- Public perception survey
- Early & often regulatory meetings (even with FDA which is voluntary)
- Following high transparency Responsible Use Principles
3 Types of Trees, 3 Regulatory Paths

- 3 types of trees planted in field trials
 - Transgenic trees with genes of interest from non-sexually compatible species (Transgenics)
 - Transgenic trees with genes of interest from sexually compatible species (Cisgenics)
 - Somatic Embryo Clones (SE Clones)

- Each type serves a different purpose
 - **Transgenics** can use a wide variety of genes to find maximum blight resistance
 - **Cisgenics** use Chinese chestnut genes for resistance to eliminate new protein production and reduce public concern
 - **SE Clones** provide clonal replicates to test conventionally bred genotypes for blight resistance and provide controls to transgenics
Where and How FHI is Regulated

Transgenic trees require a lot of attention

- Permits are required whenever a transgenic is:
 - Moved over state lines
 - Planted outside

- Reports are filed:
 - When plantings occur
 - If unexpected events occur (early flowering, heavy mortality, escape, etc)
 - Annually

- FHI has 2 primary field trials at Virginia Tech
 - Kentland
 - Powell River

- Other trials at UGA, ESF, and Joe James Farm
Pros, Cons, and Regulatory Progress

- Each tree type has strengths and weaknesses from a regulatory standpoint.
- FHI is working to understand tradeoffs of each.
- Note that FHI is not set up for restoration.
- Containment is expensive on a small scale, unrealistic on a large scale.
SE Clones Tradeoffs

Advantages

- Not regulated
- Provides controls to transgenics
- Allows for tests of conventionally bred trees
- Can be cryostored

Disadvantages

- Not a forest health strategy in itself
- Relies on selection and breeding programs to provide potentially elite germplasm
- Seed-based system can’t directly clone trees
Cisgenic Tradeoffs

Advantages
- Potentially* less regulation than transgenics
- Produces no new proteins (FDA)
- Strong argument for exclusion under FIFRA

Disadvantages
- Genes must come from a sexually compatible species
- Unless a process is used that doesn’t trigger APHIS, much of the same risk analysis is required as a transgenic

*Extent of regulation is unknown until the process is actually tested
Transgenic Tradeoffs

Advantages

- Maximum regulation
 - NEPA,
- Large selection of genes available
- Fastest approach to produce resistant trees in the lab

Disadvantages

- Maximum regulation
 - NEPA
- Public perception concerns
- Likely to require the most risk assessment
Regulatory Hammers

- **USDA: PPRA** – What is the effect of the plant on the environment?
 - No GM tree has been granted non-regulated status for restoration

- **EPA: PIP/FIFRA** – What is the safety of an expressed protein?
 - May require licensing with renewal process.
 - Breeders would have to fill out paperwork, consumers would not

- **NEPA: All Agencies**
 - Requires agencies to integrate environmental values into decision making processes
 - The significance of an action must be analyzed in several contexts such as society as a whole (human, national), affected parties and regions
 - Agencies expect lawsuits
 - EA vs EIS …
How do we Quantify Benefits?

Each agency weighs benefits with safety risks

- Some benefits to consider include:
 - Social
 - Restoring a critical part of North America’s natural heritage
 - A new tool to improve forest health
 - Environmental
 - Potentially fastest carbon sequester of any east coast hardwood
 - Restore native species to improve native biodiversity
 - Economic
 - High quality, naturally rot resistant timber
 - Income for historic tree farming communities (lumber, nuts)
How Do We Prove Safety?

No checklist, but we will at least need:

- Silvicultural information
 - Growth rates, nut production, time to flower
- Plant pest risk assessments
 - Is it weedy? Is it more susceptible to pests?
- Effects on non-target organisms
 - How does it effect herbivorous insects, mycorrhizae, and pathogens?
 - How does it affect sexually compatible species that aren’t chestnut?
- Information on how the tree produces & metabolizes proteins
 - Are produced proteins toxic or produce allergies in people or animals?
 - Are metabolites different from non-transgenic and if so, how?
- A sample reintroduction model
 - How will the tree affect larger scale ecology?
Transgenic trees pose big challenges:

- Should non-regulatory status (deregulation) be pursued in general?
 - If not, what is the fate of the current trees and research?
 - If so, which tree should begin down the road?
 - What is the end goal?

- What do we know?
 - It is a long process
 - Tort lawsuits from organic chestnut growers is possible

- What do we need?
 - More field trial data!
 - Better understanding of social perceptions
 - A test tree among test trees (Bill has some ideas!)